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ABSTRACT

Cebeci's viscous/inviscid interaction program was applied
to the analysis of steady, two dimensional, incompressible
flow past four airfoils, the NACA 66,-018, 0010 (Modified),
4412 and the Wortmann FX 63-137. Detailed comparisons with
the available experimental results show that the essential
features are correctly modelled, but that significant

discrepancies are found in regions of flow separations.
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I. INTRODUCTION

Understanding of the characteristics of the airflow over
an airfoil is of paramount importance to the airfoil
designer. Two methods are currently available which give
accurate results. The first is the use of wind tunnel tests.
The drawbacks to this method are cost and time consumption.
The second is the processing of the Navier-Stokes equations.
This method's drawbacks are the requirements and expense of
using supercomputers due to the extensive <calculations and
storage requirements. There is still a need to come up with
an inexpensive, fast and accurate engineering tool to compute
airfoil flows.

Several methods have been derived to accomplish this end.
But the most promising 1is the Viscous-Inviscid Interaction
method. The outer flow 1is computed using inviscid flow
equations, and the inner flow 1is computed using Prandtl's
boundary layer equations. The key to this method is the
extent of interaction between the inner and outer £flows.

The purpose of this thesis is to evaluate the capability
of the viscous-inviscid interactive aircode developed by
Tuncer Cebeci and associates at the Douglas Aircraft Company
[Ref. 1]. This cc puter program was applied to four airfoils
with various angles of attack and Reynolds numbers. The
computer results were then compared to previously reported

experimental results.




The conservation of mass and momentum are summarized in
Chapter 2, inviscid flow calculations are discussed 1in
Chapter 3, and viscous flow equations are described in

Chapter 4. Viscous calculations are presented in Chapter 5,

2]

and the specific interaction methods are shown in Chapter
Finally, in Chapter 7 computer and experimental results are
compared for the NACA 663-018, 0010 (Modified) and 4412

airfoils as well as the Wortmann FX 63-137 airfoil.




I1. FUNDAMENTAL EQUATIONS

The conservation of mass and conservation of momentum
provide the foundation for incompressible flow analysis.
With these fundamental concepts along with appropriate
assumptions and approximations, working relations for two-

dimensional, incompressible flow are obtained.

A. CONSERVATION OF MASS (CONTINUITY)

The conservation of mass principle states that mass
cannot be created nor destroyed. Equating this statement to
a fixed control volume the net mass flow rate into and out of
the control volume equals the time rate of change of mass
within the control volume [Ref. 2:p. A-1].

Given a control volume, the mass flow rate through one of
its surfaces is equal to the product of the fluid density,
the fluid velocity normal to the surface and the area of the

surface [Ref. 3:p. 29].

d mass

Ve+ens (2.1)
dt

In 2-D flow the x-component of the mass flow rate at the

center of the positive x-face, position dx/2 and side length

dy, is represented by Taylor series expansion [Ref. 2:p. A-2]




o dx 9
pu + —(pu)— +

L_ aX 2

As dx approaches zero

leaving

pu + —(pu)—

Similarly, the

X-component

x2

ali

X

center of the negative x-face,

dy, is represented by

pu ~ —(pu)—

As illustrated in Figure

[3)
oOx

2.1 the

higher

of

dx 1

(pu)(—)= — +...

2 2!

order

dx
dy.
2

the mass

dx
dy.
2

four sides of the 2-D control surface is

dx
pu - —(pu)—
Ox 2

P

dy

oY 2
_

dy -

dx -

dx
pu + —(pu)—
X 2

— q =
Yy
pvV + El(pv)——

3)% 2

-

dy. (2.2)

terms disappear

(2.3)

flow rate at the

position =-dx/2 and side length

(2.4)

net mass flow through the

dy

dx (2.5)




° dy
pv + —(pV)— Yy
oY 2
0 L; )
D dx R} dx
pu - —(pu)— —> dy + —> pu + —(pu)—
ox 2 oOx 2
dx
.
pv = —(pv)—
oy 2

Figure 2.1 Mass Flow Through 2-D control Surface
[Ref. 4:p. 12]




which is equal to the rate of change of the mass within the

control volume

& dxdy (2.6)
t

Combining (2.5) with (2.6) and simplifying yields

- élipu)dxdy - EL(pu)dxdy = Qﬂ dxdy (2.7)

pe )4 pYe

Dividing by dxdy and rearranging yields

90, 9 (ou) + Q(pu) = 0 (2.8)

ot Ox r9)'4
For steady, incompressible flows the continuity egquation

becomes

du Ov
—_ +t — =0 (2.9)
Ox Qv

or in vector form the continuity equation [Ref. 3:p. 30} is
v «.v=0 {2.10)

B. CONSERVATION OF MOMENTUM (NAVIER~STOKES)
The conservation of momentum, Newton's second law of
motion, states that the rate of change of the linear momentum

is equal to the sum of the forces applied [Ref. 2:p. B-~1].




TF = —(mV) (2.11)

As illustrated in Figure 2.2 the two significant forces which
act on an element of fluid are surface forces which act on
the surface only, pressure and shear, and body forces which
affect the mass of the element, such as gravity. Assuming
moment equilibrium in an element, T,y = Tyx, the 2-D first
order Taylor series expansion for normal and shear surface

forces in the x-direction is

dx dx_-
T + 9—(txx)—— = Txx + El(txx)—‘ dY
X 2 Ox 2
— —_
dy D dy
+ Ty + ——('ny)— = Txy *+ —(“ny)— dx
oy 2 Ay 2
L —
= EL(txx)dxdy + El(txy)dxdy. (2.12)
Ox [0)%

The body forces per unit mass are represented by

Fepopy = Xi + Yj + Zk (2.13)

such that the x-component of the body force on an element is

fs(mopy), = pdxdy-1-X. (2.14)

Combining equations (2.12) and (2.14) the sum of the forces

in the x-direction is




dy

tYY + —(tYY)_
oy 2
dy
Tyx + gL(tyx)__
oy 2
>
D dx
dx Y Tay + —(Toey)—
Tarrx = g(.txx)—' ax 2
Ox 2
dy X
dx
a dx 9 txx +g(tx)<)‘—
Ty ~ —‘(txy)— dx aX 2
Ox 2
dy
Tyx = —E)—(tyx)—' \l/
oy 2
d dy
Tyy = —(Tyy)—
[0)'s 2

Figure 2.2 Stresses on a 2-D Control Surface
[Ref. 4:p. 15]




[
BFsc =] PX + —(Tsr) + —(Tsy) |dxdy. 2.15
ax aY ( )

The rate of change of the linear momentum in the x-direction

assuming constant mass is mdu/dt.

du Qudx OQudy Ou Ox
AS — = — — 4+ — — + — via the chain rule, and — = u,
dt Ox dt Oy dt Ot ot
oy
and 5— = v the x-direction change in linear momentum for
t

particle is

du Au Ju Qu
m— = pdxdy(v— + Vv— + —). (2.16)
dt Ox dy Ot

Substituting equations (2.15) and (2.16) into the x-component

of equation (2.11) yields

du Ju Qu )
pdxdy(u— + v— + —) = PX + —(These) + —(Toey) |dxdy.(2.17)
X ay at ox aY

Now, in order to have the entire equation as a function
of velocity the normal and shear stresses must be found in
terms of velocity.

By assuming a Newtonian fluid [Ref. 2:p. B-5] the shear
stress is linearly related to the rate of angular deformation

with fluid viscosity being the proportionality constant.




Ju Qv
Ty = H(— + —) (2.18)
dy Ox
The normal stresses are equal, but opposite in direction
to the pressure when no shear stresses are involved. With
shear stress from viscosity it 1is assumed that the normal
stresses deviate from -P and that the deviation 1is
proportional to both a) the rate of 1linear strain in the
direction concerned, and b) the rate of volume deformation.
Therefore, the normal stress in the x-direction [Ref. 1:p. B-
10] is
Ju 2 Ju Qv
Toex = = P + 20(—) = —-U(— + —). (2.19)
Ox 3 Ox Oy
Applying the conservation of mass, equation (2.9), equation
{2.19) simplifies to
Ju
Toee = = P + 2U(—). (2.20)
X
Substituting equations (2.18) and (2.20) into (2.17) and

dividing by dxdy yields

Ju Ju Au 9 Au D Ou v
{(U— + v— —) = pX + — (=P + 2U(—)}) + p—(— + —)(2.21)
o oy ot T T ax “ox | Sy oy ox

After multiplying and rearranging the right hand side becomes

10




op O2u d2u d2v
PX - — + 21 + u + u
ox Ox* dy? (R4

which is also equal to

opP d%u RE 0 Su Qv
X - — + +p—(— + —)
P Ox uaxz ' uay? uax ox ! [3)%

Again applying the conservation of mass, eguation (2.9),

equation (2.21) becomes

Qu du OQu op 92u  92u
pluU— + vV— + —} = pX - — + u( + ). (2.22)
ox dy Ot Ox 0x* oy?
With v= p/p = Kinematic viscosity and neglecting the body

force, X, the two dimensional Navier-Stokes, conservation of
momentum equation for incompressible and constant viscosity
flow in the x-direction [Ref. 2:p. 436] it

du du Ju 1 0P d2u  92u

+ U— 4+ V— = = — — + vy{ +

- ). (2.23)
ot Ox oY p Ox oxz Qy?

Similarly, in the y-direction the Navier-Stokes equation is

v Ov v 1 OP 02v  O2v

+ U— + V— = - — — + v{ +

— ). (2.24)
ot 9x vy p QY ox2  Qy?

11




III. STEADY INVISCID FLOW

Although real fluids are viscous the major effects of
viscosity are concentrated in a region, or layer adjacent to
a body. Therefore, analyses of inviscid flow are useful and
serve as a good approximation to flow outside the boundary
layer and wake behind the body.

The Jjustification for applyianag the results of perfect
fluid analyses to viscous flows was postulated by Ludwig
Prandtl in 1904 [Ref. 3:p. 299]. He stated that the effects
of viscosity on the flow around streamlined bodies at high
Reynolds numbers are effectively limited to a "thin" boundary
layer. The characteristic 1length to judge thinness 1is the
distance from the forward stagnation point to the point of

consideration.

A. VELOCITY POTENTIAL

For flow outside the boundary layer it 1is a great
advantage to simplify equations and develop a single
governing equation. With the assumptions of steady flow, no
energy transfer to or from the fluid, no body forces, no
shear stress (inviscid), and irrotational flow the velocity
potential, ¢, is utilized ([Ref. 3:p. 48]. ¢, a scalar
function of spatial coordinates, x and vy, 1is defined such

that

<
n

v (3.1)
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and
U = V & (3-2)

The importance of the velocity potential is that only one
equation 1is needed to describe the irrotational flow.

Velocity components are obtained using equation (3.2).

B. LAPLACE EQUATION
For steady, incompressible flows the continuity equation

(2.9) is

Ju Ov
+-—=0
Ox Oy
Rewriting (2.9) in terms of the velocity potential the
equation becomes
0%¢ 9%

+ =0 (3.3)
ox2  Qy?

This form of the Laplace equation [Ref. 2:p. 81] is the
governing equation for steady, irrotational flow of an
incompressible fluid.

The importance of equation (3.3) is that it is linear
allowing for the principle of superposition. For example if
¢., ¢=, ¢s...are solutions of (3.3), then the sum ¢ = ¢, + ¢
+ ¢a +...1s also a solution of (3.3). Superposition of
irrotational, incompressible flows allow for the construction

13




of complex flows that are also irrotational and

incompressible.

C. SIMULATION (CONFORMAL MAPPING)

The inviscid flow about an airfoil can be obtained most
conveniently by means of a transformation, which starts with
a known flow about a simple contour, a circle, distorts the
contour into the desired shape, and simultaneously adapts the
flow to that shape. The transformation is accomplished using
a sequence of three conformal mappings [Ref. 1:p. 324]}.

The first mapping, necessary only when the airfoil
trailing edge has non-zero thickness, is accomplished using a
logarithmic mapping function. The airfoil 1is pertﬁrbed
slightly to make the upper and lower surface, trailing-edge
points coincide.

The second mapping analytically removes the trailing-edge
corner using the Karman-Trefftz mapping.

The third and final mapping transforms a quasi-circular
shape into a perfect circle using an iterated sequence of
Fast-Fourier Transform applications.

During the transformation of streamlines about a circle
to those about an airfoil, the preferable approcach insuring a
transformed flow free from vorticity wuses the complex
variable z = x +iy [Ref. 5:p. 285]. The transformation of z
to another plane is E= f(2z) = & + in. The potential
function, Q = ¢ + i¢, is irrotational and incompressible in
both planes.

14




The streamlines, ¢ , and equipotential lines, ¢, of a flow
in the z-plane will transform into another orthogonal network
of lines 1in the [-plane. Different magnification ratios and
different amounts of rotation at different points in the
field will, however, change the appearance of the flow
pattern from about a circle to about the airfoil.

The general transformation function whose derivative
d{/dz satisfies the requirement d{/dz approaches unity for

large values of z is

0= 2 4+ Colnz + Ca/2 + C2/22 +... . (3.4)

The requirement is necessary as streamlines are not distorted
a great distance from the body where the body's shape has no
influence on the flow.

The coefficients may be real, imaginary or complex. A
finite number of the coefficients are determined from the
specified normal velocity components equally spaced arcund
the unit «circle, and £from the Kutta condition which ensures
stagnation at the trailing edge.

While in the first iteration the normal velocities are
zero, and the solution for flow over a circle is used, the
subsequent normal velocity boundary conditions are determined
from the previous viscous-flow calculations wusing the

equation

15




d
Vn = —(uab™) (3.5)
ds
where u. is the velocity at the edge of the boundary layer
and 6* 1is the displacement thickness. Once the coefficients

are found, the real and imaginary parts of equation (3.4) are

equated yielding

£ = E(x,y) and n= n(x,y).

As X% + y2 = r? the two equations of § and n are transformed

to
X = x(§,r?) and y = y(n,r2).

Then %2 and y? are added to yield

X% + y? = r® = [:x(a,rz):]z + [:y(n,rz):]z. (3.6)

After dividing both sides by r?2

1 1
1= — | x(8,r®) 2+ — [ y(n,r?) | (3.7)
r2 r2

Then each circle of radius, r, in the 2z-plane is transformed

to the proper shape in the [-plane to describe inviscid flow.
1. Transformation of Velocities [Ref. 5:p. 291]

In the z~plane as Q(z) = &(x,y) + i¥(x,y) the

velocities are defined by
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dQ(z)
dz

= V, - iV, (3.8)

where,

V = Ve + 1V,

In the (-plane the velocities are also found

daQ
—_— =V = iV (3.9)
at 13 n
where,
Vc = VF’ + 1Vn .

The velocities in the two planes are equated by

Vg - iV oz — L — = —— . (3.10)

The pressure in the transformed stream is related to the

stream velocity through Kelvin's equation

1
2 + P = Constant = —p
2

2
+ P,. (3.11)

v
¢ 1

Ve
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IV. VISCOUS FLOW

A. DERIVATION OF BOUNDARY LAYER EQUATIONS

The previous analyses provide a valid solution to the
flow outside the boundary layer. Within the boundary layer
however, the effects of viscosity cannot be neglected. 1In
laminar flow governing equations can be obtained by
simplifying the conservation equations. In turbulent flow,
however, the number of variables outnumbers the equations.
Great dependence is then placed on dimensional reasoning and
on hypotheses suggested by experimental results.

The most important deduction from Prandtl's thin boundary
layer theory 1is that static pressure can be considered
constant across the boundary layer [Ref. 3:p. 299].

opP

13)'
As the boundary layer thickness, 6, is small, d&/dx is also
small. Streamlines are then only slightly curved and the
radii of curvature, R, are 1large. With a 1large R the

equilibrium condition

18




illustrates that Opr/ 9y Will be very small and can be
neglected. Experimental results confirm that Jp/ oy may be
neglected even over surfaces of small radii of curvature.
Also, 1in a thin boundary layer with a slowly changing
thickness Ov/Ox is much smaller than Ou/dy. The significance
is then that the normal shear stress may be neglected when
compared with the viscous shearing stress. Equation (2.18)

then becomes

Ju
Ty = H—. (4.2)
oY
With this simplification the approximate equation for
flow in the two-dimensional boundary 1layer <can be found

directly. Newton's second law of motion applied to a fluid

element of mass may be written

du Ju Au OP  OTyx
pdxdy(— + u— + V—) = (- — + Ydxdy (4.3)
ot Ox Qv ox oy
as illustrated in Figure 4.1. Substituting equation (4.2)

and dividing both sides by dxdy yields

Ju du au) op ©O Ou
(— + U— + V—) = (= — 4+ —(Y—). (4.4)
P e oy T T e 59 ey

In terms of kinematic viscosity equation (4.4) becomes

(4.5)




ny
(Oyx + —— dy)dx Y
Y
—> u —_— X
dy p
Pdy > &—(P + — dx)dy
dx X
L ——
Oyadx

Figure 4.1 Forces Acting on an Element in the Boundary Layer
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This equation is the boundary layer equation of motion and is
identical to the equation found using an order-of-magnitude
analysis [Ref. 3:p. 443]. Equation (4.5) is also nearly
identical to the Navier-Stokes equation (2.23) with the
exception that the term v92u/0x2? is deleted. The order-of~
magnitude analysis suggests that this term, vo2u/Qx2, may be
neglected compared to vyO32u/ Oy2. Combined with the
continuity equation Qu/Ox + Ov/0Jy = 0 (2.9), equations (4.5)
and (4.1) are known as Prandtl's boundary layer equations
[Ref. 2:p. P=-9].

For an incompressible flow, there are three variables, u,
v and p, but only two equations, (4.5) and (2.9). The
equations may be solved though, by first determining p as a
function of x using inviscid methods, setting ap/ay = 0 in
the boundary layer, and then solving (4.5) and (2.9) for the

velocity distributions.

B. TURBULENT FLOW

Turbulent flow as differentiated from laminar flow is
characterized by fluctuating instantaneous properties which
greatly 1increase the complexity of the problem. A very
useful simplification to the turbulent problem is then the
use of time-averaged values, denoted by a bar over the value.
Instantaneous values are indicated by the prime [Ref. 4:p.

23].
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The continuity equation containing total values becomes

—(U + u') + —(V +v') = 0.
X oy

simplifying the equation becomes

—(Uu) + —(u') + —(V) + —(v') =0
X Ox dy dy
with
0 _ - o)
—(u) = —(u) and —(u') = —(u') =0
X X Ox X
a(') ) and E)( ) (v') =0
—(V}) = —(V n — (V' = — (V' =
Ox Ox Ox Ox

The time-averaged continuity equation for turbulent flow is

now

El(ﬁ) + Ei(v) =0 (4.6)
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Applying total values, the steady version of the Navier

Stokes equation (2.23) becomes

_ olu + u')  _ oflu + u') 19(p + p')
(U + W)———— + (V+ V) = -

Ox [} P Ox

92(u + u')  D*F(u + u')
+ v + . (4.7)
Ox2 Jy?

After simplifying, the time-averaged Navier-Stokes eguation

for turbulent flow [Ref. 1l:p. C-10] becomes

_0 _ _| 9(u) 19p 02u  0%u
u—(u) + v = = - o+ v + )
Ox dy p Ox dx* Qy?
___(uvz) -——(U'V'). (48)
Ox Ay
The new terms, a/ax(GT;) and /Jy(u'v'), which correspond to

normal and shear stress, are called Reynolds

stresses. The similar y-component terms are a/ay(GT;) and

d(v'u') Px.

C. TURBULENCE MODELS

The time-averaged Navier-Stokes equation 1is nearly
identical to the original equation except that the
instantaneous values are replaced by the mean or time-
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averaged values and two additional terms involving
fluctuating velocities, u' and v', appear. An interpretation
of these two terms compares them to the previously existing
terms Q2u/Ox-. and D2U/)Y=. The right hand side of equation
(4.8) less the pressure term, and after multiplying by

density, becomes

d%u 92u ) )
1 + 1 - _ulz - —_l! ]
Yo ayr ox oy
or
0 Ou 0 ou
—(— - 2 e Yo = ETAR
o uax pu’?) + ay("ay pu'v')

As each term has the dimensions of stress, and u(au/ay) is

part of the laminar shear stress <T.., it appears that the

term -pu'v' represents a turbulent addition to shear stress
[Ref. 2:p. T-2]. Now, this shear stress is really a vertical
mixing of horizontally, travelling fluid particles. A model
of this mixing then calculates the rate of momentum transfer
involved.
1. Prandtl's Mixing-Length Model

To predict the turbulent stresses Prandtl assumed
that turbulent fluctuations are primarily the result of the
mean velocity differences between two layers in the flow.
Therefore, u' is proportional to Qu/dy with the
proportionality factor having the unit of length.
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Ju
(u'2)* = g (4.9)
3)%

Also, assuming that v' 1is of the same order of magnitude as

u' at a particular point,

Ju
b—.
oy

(vvz)l

(4.10)

Substituting u' and v' into the turbulent shear stress, T-,

is

ou Ju
- pu'v' = = pab(—)(—). (4.11)
oy v

As a and b are both unknown constants of length, they both
may be replaced by the "mixing 1length”, 1, the hypothetical
distance between the two layers involved. The turbulent

shear stress is now

ou

oy

u
oy

Tr = pl2 (4.12)

which insures the correct sign.
2. Eddy Viscosity - Cebeci-Smith
The turbulent addition to shear stress may also be

modeled in terms of "eddy viscosity". As laminar s’ ear
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stress = Tyx = u(OQu/dy) = pv(du/ Jy, turbulent
may be equated

shear stress

ou
- pu'v' = pVe—,
oy

(4.13)

where v., the eddy viscosity is empirically determined.

The method used here is that of Cebeci and Smith as

modified by Cebeci, Clark, Chang, Halsey and Lee, [Ref. 1l:p.

327].
Eddy viscosity by Cebeci is represented by
Yy u
{0.4y[1 - exp (= =)1}% [—|Yer (0 £ ¥ £ V&) (4.14)
A Y
Ve =
a J (Ve = u)dy | YexY (Ye £ ¥ £ 8) (4.15)
o
where
26v 1
A= — —— and Y=
3 1 + 5.5(y/6)*
u
V ———
Y
max

The distance from the body y. which is less than the boundary

layer thickness, &, is the distance where the two equations

(4.14 and (4.15 give the same resultant v..
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The intermittency factor, 7Y.., which indicates the

local fraction of turbulent flow to total flow, is given by

X dx
Yer =1 = exp |- G(X = Xer) _ . (4.16)
Xer U

The location of the start of transition is Xe., and the
empirical factor G is
1 u>

G = —— R-1-34¢ (4.17)
1200 v? yux

where Rxer 1S the transition Reynolds number

Rxer = (uex/V)tro (4°18)

In equation (4.17) the empirical constant GY., =
1200, was used by Chen and Thyson [Ref. 4:p. 327]. Values
lower than 1200 may give better results at low Reynolds
numbers as will be discussed in Section VII.

The expression for a is

0.0168 0.0168
a = = (4.19)
F2-8 2.5
Ou/Ox
1 -8
Ou/Qy

The non-dimensional factor F represents the ratio of

the product of the turbulent energy by normal stresses to
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that by shear stress evaluated at the location where shear

stress is maximum.

e —

(u'2 - vlz)au/ax

(4.20)

o]
n

[y
[}

- u'v' Qu/9y

L — (- UW'V')max

According to the data of Nakayama [Ref. 1:p. 327], B can be

represented by

— —_ 6
Ry < 1
u'z - yv'= 1 + 2R+(2 - Ry)
B = —_—— =
‘u'V' 1+R'r
— — (= UW'V')max _ Rr 2 1
R
where Rr = Tw/{- u'V')max and Tw is the wall (body) shear
stress.

D. TRANSITION

The location of the onset of laminar-to-turbulent
transition when not found experimentally is determined
empirically. The method used by Cebeci [Ref. 4:p. 333] is
the criterion proposed by Michel.

At the point of transition the Reynolds number based on
momentum thickness, ©, 1is related to the Reynolds number

based on the coordinate position, x.
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where

22400

Re;x- = 1.174 (1 + )R.xr_r c.46 (4-21)
Raxexr

Rax = Ua{x/v) and Reer = Ua(e/\’)-

In the Cebeci Code the transition may be determined in

the following ways:

1)

2)

3)

The points of transition are calculated using Michel's
criterion.

If laminar separation occurs forward of the criterion
points, Michel's criterion is disregarded and
transition is redefined at the separation point.

The transition locations may be specified by the user .
provided stall is not computed.
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V. VISCOUS METHODS

Momentum transfer in fluids is accomplished by
hydrostatic pressure and viscous stresses. wWwhen viscous
stresses are negligible, fluid behavior can be predicted by
inviscid flow methods as stated in Section III.

Viscous stresses caused by a variation in velocity 1in a
direction normal to the flow are called shear. The most
common shear is that found in the boundary layer between a
displayed stream and the solid surface. With the "no slip"
condition fluid velocity is zero on the surface, but the
velocity gradient is not so constrained. From the body along
its normal direction the fluid velocity asymptotically
approaches that of the free stream.

As mentioned in Section III, Prandtl hypothesized the
division of the flowfield into the two regions, the boundary
layer where viscous effects <cannot be neglected and the
region outside the boundary layer which may be considered
inviscid.

This hypothesis allows for the use of the parabolic
boundary 1layer equations of section 1III instead of the
elliptic Navier-Stokes equations. Depending on the boundary
conditions, solutions fall into three methods [Ref. 6:p. 13]:

1) The direct boundary layer method. This method uses the

"no slip" condition, where normal and tangential
velocities are zero at the surface, and a
pre-determined velocity 1is specified at the boundary
layer edge.
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2) The inverse boundary layer method. Boundary conditions
are replaced by wall shear or displacement thicknesses.

3) The interactive boundary layer method. The edge
boundary condition drives a combination of displacement
thickness and external velocity.

Methods one and three will be discussed as they apply to

the Cebeci Code.

A. DIRECT BOUNDARY LAYER METHOD [Ref. 6:p. 13]

This method for solving the boundary layer eguations is
used only near the leading edge where the viscous effects are
small. Initial conditions are generated at the stagnation
point and the equations are integrated around the leading
edge. The numerical solution utilizes a finite difference
method where the continuity and momentum equations are
redefined as a system of linear algebraic equations.

The method begins by describing steady, incompressible,
2-D flows in a <curvilinear coordinate system where x is
directed along the airfoil surface and y is perpendicular to
X. The boundary layer equations with the turbulent Reynolds

stress are

ou OV
—_— 4+ — =0 (5.1)
Ox Oy
10p 1 O Ou Qu du
—_— — + — —[p— - pu'v'] = u— + V— (5.2)
p Ox p Oy Oy ° X Jy
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—_— = 0. (5.3)
where the order of magnitude of any turbulent stress is
assumed to be that of 1its 1laminar stress. The boundary

conditions are:

0, v=20 (5.4)

n
o
=l
n

at y

"
8
=]

n

at y ; Ua (X) (5.5)

The eddy viscous stress previously defined is reprinted as

du
-pu'v'’ = pVe—. (4.13)
Oy

Alsco, the pressure gradient term may be written
— — = Ue—— (5.6)

Therefore, the momentum equation (5.2) may be rewritten as

d% + 9%  du. O om
u— v = Ue + — (b—) (5.7)
Ox Oy Ox Ox oY

where b = 1 + v./v and the boundary conditions are

at y = 0; u(x,0) = 0, v(x,0) = 0 (5.8)

at ¥ = Ye; U(X,Ye) = Ua(X).
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1. Falkner-Skan Transformation [Ref. 6:p. 14]

To solve the new boundary layer equations the
Falkner-skan transformations are used, which reduce the
number of variables, and scale the normal coordinate y and
the stream function ¢ with reference to the external

velocity.

Ue |3
n= oyl — (5.9)
vX
¢(x,Y) = (ue xX)* - f(x,n) (5.10)

The continuity equation 1is automatically satisfied
using the stream function (u = O¢/Qy and v = -O4/0x).
Therefore, only the momentum equation needs to be solved,

which after transformation becomes

m+ 1 Of of
(bf")" + f£" + m{1 -(£')2)] = x(f'— - £"—)(5.11)
2 Ox Ox
where m = (x/ue)(duefax), a dimensionless pressure-gradient,

and f' = Of/Oy.

This equation (5.11) 1is a third order partial
differential equation, and the solutions are "non-similar” as
they are functions of both x and n§. If the solutions were
only a function of p, then the right hand side of the

equation would equal zero, and the flow would be "similar"
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[Ref. 1:p. v-=10]. To solve equation (5.11), a numerical
solution is needed such as the "box" method.
2. The Box Method

The box method, developed by Keller in 1970 [Ref.
1:p. 331], is a widely used methods for solving non-linear
differential equations. The steps of this method include the
conversion of the Falkner-Skan, transformed, momentum
equation into a system of first-order partial differential
equations. This non-linear system, after conversion from a
continuous function to discrete, is 1linearized by Newton's
method. The block elimination method is then used to solve
the linearized difference equations of the boundary layer
problem.

The third order momentum equation (5.11) is converted
into a first order system with the addition of the dependent

variables U and Vv [Ref. 6:p. 141].

U = f° (5.12)

Veuyl o= £ (5.13)
m+ 1 ou of

(bv)' + fV + m(1 - U2) = x(U— - V—) (5.14)
2 Ox Ox

The boundary conditions are

at 7 0, U(x,0) = 0, £(x,0) =0

at n

Ne; U(X,Me) =1
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The solution domain, 0<x<xr and 0<n<n,, of the
continuous functions £, U and V 1is then covered by a
rectangular grid to facilitate the problem solving with a set
of discrete values. This grid is shown in Figure 5.1.

The subsequent notation [ ]3 is used to represent the
quantities of f, U or V at the point (xs, ni).

All gquantities <can then be approximated by network
coordinate values. Using the grid system, the solution of
the parabolic layer equation at a certain streamline position
depends solely on the solution of upstream positions, while
no downstream influence needs to be considered. As
calculations proceed from the stagnation point in the
downstream direction, the overall solution can be obtained
incrementally. Hence, one step of the solution procedure
sets up the governing equations for a column of grid boxes in

the sub-domain

Xi1-1$xX<xs and 0sn<ng

and solves for the values of the downstream grid position.
The x-grid position currently solved for is then assigned the
superscript "i" while "i-1" represents the previous position
of known properties. Using coordinates of box midpoints and
centered-difference derivatives, the equations are actually
satisfied midway between the grids.

Equations (5.12) through (5.14) in terms of finite

differences [Ref. 6:p. 15] are now written

35




(o]

a
a
v

LEGEND

known
unknown

center for momentum
equgation

center for equgations
containing
f-derivatives oniy

Figure 5.1 Rectangular Grid for Finite Difference
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£, - £ . ,
J Jj-1 _ 1 i i
A= =y v Ul (5.15)
J
i i
U, - UL . ,
] j=-1 _ 1 i i
B ek (v + Vi) (5.16)
i‘i i"% N |
bv) - (bV)y - ,
(bV) 3 LSS S LIS R S
h_ =1
J
i i-1
. . . U - UZ
i-3 i-3 i-3 “j-3 j-4
1 - (V. 2t = . . -
m [ ( J_%f_'l Y Lt
i i-1
, £ - £
i-3 73-% j-3
V. 5.17
-3 X (5.17)
where the ordinary differential eguations, (5.15) and (5.16),

are centered about (xi, n3-3%) and the

equation, (5.17), is centered about (xi-
The boundary conditions are
i_ i _ i _
Ul- 0, f1 = 0 and Uj =1
Equations (5.15) and (5.16) are the
derivatives.
3. Newton's Method [Ref. 6:p. 15]

This set of finite difference e

with combinations of unknowns. Newton's
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needed to solve the system. The variables are linearized

using an iterative procedure with preceding values.

f;’l = f;‘1+ Gf;'l and f§'K = f;'x'l + 6f;'x for K22
where, Gf%’x<< f%'K'l

j 3
U;’l - U;_1+ sui 'l and U;’K = U;’K-l + 5;.x for K22
where, sul K<< U%‘K'l
v;'l = v;'1+ svi-l ana vi'K - v;'K'l + 8vE-K for k22
where, 6V§'K<< V%'K-l

K is the iteration counter. After substituting these values
into equations (5.15) through (5.17) and neglecting the

i,K i,K i.K
quadratic terms of 6f , O6U and 6&v , the system of

] b p)

unknowns is then linear.

sel¥ - eel:] -_gl(su§'x S B SR il
+ by u§;§’1 (5.18)
sut-K - gyt K _ M3 syl-K , gyi-Ky o yl-K-1 | ylk-1
b j=1 T2 7] -1 j-1 3
+ by v?;g'l (5.19)

38




i.K..,1.K i.K..,i.K i.Ko1.K
S ; . . . . ;
( 1)3 5VJ + (Sz)J GVJ + (53)3 GfJ +
i.K_.i.K i.Ko,.1i.K i.K.,,i.K i.K
(S.)j 6f 0t (35)j 5U + (SS)j 6Uj_1 (rz)j (5.20)
where
i.K-1 .
(51K b ST PO S It TN nttl o iik-1
i.K-1 .
(s.)i-Ko by Rt QP Oy SERRE T NS RENE GRPE B
)y T TR T IR e s it L S RS
X. . i
i.K_ T3-% i.K-1 i-1 m- + 1 _i.K-1
(sa)J = TE;— (VJ_% + Vj_%) + — V3
K. i
i.K j-3 i.K-1 1 m + 1 ,i.K-1
S . = \Y/ v v
( 4)3 -ZK;—- ( J"% + j 1) + _—_4_ 3_1
X, .
i.K_ _ i~} i, i.K-1
(Ss)j = (—'R-i—"'m )UJ
R X. . R
i.K_ _ i-3 i,..i.K-1
(Ss)j = ('K—_ + )Uj 1
i.K-1 i.K-1
(ra Ko {((bv)j (BVISA1 , mo+ 1 g,k
2Ij h] 2 J-%
- (3 L ml)(Ui'K'l)z + xi-i(vl.x-l gl-K-1
X, i-4 X, 33 T3-d
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i-1 i.K i-1 .i.K-1
T Sa
R T A T S WL
> - V5
X. , , X.
i-3 i-1 i-1 2 _ i-} i-1 _i-1
M ViR T SE e S S BT
+ 2mi-%}

The boundary conditions are

5fo = O, 6Uo = 0, 6UJ: 0
4. Block Elimination Method [Ref. 6:P. 17]
The system of equations are iteratively solved until

i.K i.K i.K
5f , 6U and &v become small enough to be neglected.

J J ]
The solution method is that by Keller and is called the Block
Elimination Method. In this method block-tridiagonal

matrices are composed of blocks. Only those blocks on the

main diagonal and on the two adjacent diagonals are non-zero.
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i.K i.K
(A1"71 [e7° ")
i.K i.K i.K
[B°71 [A;"7] (€377
[Bi'K] [Al.K] [cl.K]
) ]
i.K i.K i.K
(Bylq) [A5y) 16504]
i.K i.K
[B 1 [A 1
- J J ]
where the blocks are 3x3 matrices
T -hj/2 0 ]
i.K, _ i.K i.K i.K
[Aj ] = (Sa)j (Ss)J (51)j
=1 -hj/2 0 ]
351 = 50 ® sl syt
0 0 0
0 0 0 ]
[c%'x] = |o 0 0
_ci 1 -hj+1/i
[T 0 0 ]
[A;'.'K] = o 1 0
-2 -1 -hz/z_a
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F -hJ/Z 0

(A2 %1 = Jsa)3 ™ s 3 F (salK
0 1 0
L -

i.K

i.K-1 i.K-1 i.K-1
ri): = . - £ + h.UZ 2<hsJ
(Ta)y £50 3 j -4
(rz)ﬁ'K = {As defined in equation (5.20)} 25343
i.K i.K=-1 i.K-1 i.K-1
r . = U - Ul + h, vV 2<h<Jd
(rs) 3 j-1 J+173+3%
i.K _ ., 1.K _ i1.K _
(r)l - 0, (12)1 - OI (rS)J - 0
The block elimination method solves the 1linear
equations with two steps. The forward step eliminates the

lower diagonal of the tridiagonal matrix. The reverse step

solves the remaining system from bottom to top.

B. INTERACTIVE BOUNDARY LAYER METHOD [Ref. 6:p. 18]

As the direct boundary layer method 1is, as previously
stated, restricted to regions of small viscous effects, and
integration of the boundary layer equations fails at points
of zero skin friction, a method is needed to integrate the
boundary layer through the point of emerging reversed flow.

This method must also account for strong interaction effects




due to separation and rapid acceleration of the flow
downstream of the trailing edge.

The interactive method fulfills these requirements by
treating the external velocity and displacement thickness as
unknown quantities. Reflecting the elliptic nature of the
outer flows, an additional wunknown is introduced, but the
solution can be obtained wusing either the eigenvalue or
Mechul function methods.

The Mechul method is preferred as the eigenvalue method
involves nonlinear problems. In this method the edge
boundary condition of the direct method is supplemented with
the interactive boundary condition. The unknown external
velocity is related to its displaced and perturbed
conditions. The unknown functions u(x,y), vi(x,y) and uve(x,V)

are represented in this system of boundary layer equations

Ju Qv
-t — =0 (5.22)
Ox Oy
Au Au Oue 9D Ou
U— + V— = Ug— + y—(b—) (5.23)
Ox Jy Ox dy Oy
e o (5.24)
Qy

where pressure 1in the y-momentum equation is expressed in
terms of the external velocity.

The Mechul function approach assumes that the external
velocity, Ue, 1s a function of two arguments, x and vy,
allowing for an easy setup of finite difference equations,
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and avoiding nonlinear eigenvalue techniques. The velocity
components u and v are required to satisfy the no-slip
condition at the surface, and u must merge smoothly into the

edge velocity.

at y = 0: u(x,0) = 0, v{x,0) =0
at ¥ = Ye: U(X,Ye) = Ua(X,Ya), Uel(X,Ye) =
1 d dag
= Uaxr + — [ —(ueé*)
n dat X=~%

Uezr(X) is the inviscid edge velocity and the last term,
the Hilbert integral, approximates the viscosity induced,
perturbation velocity.

Interactive methods are wuseful in both attached and
separated regions, while direct methods fail at the onset of
reversed flow, and inverse methods converge poorly. Only at
the stagnation point singularity «¢re interactive methods
prohibited. The transformation of the partial differential
equations into a linear system of algebraic equations is very
similar to that of the direct method. The normal coordinate
y, streamfunction ¢, and the external velocity u. are scaled
with reference to a constant velocity uo, and the local

streamwise coordinate x.

n= oyl — (5.25)
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$(x,y) = (uovx)?® £(x,n) (5.26)

Ue (X,Y)
Wix,n) = —— (5.27)
Uo
Uo is the vector mean velocity. U. cannot be the reference
velocity as for Falkner-sSkan variables because in this case
the external velocity is unknown. The first order, semi-
transformed coordinate system with additional variables U and

V is

U= f (5.28)

V=UU = ¢§f" (5.29)
1 ow U of

(bV)' + — £V + XW— = X(U— - V—) (5.30)
2 Ox Ox Ox

W' =0 (5.31)

and the boundary conditions are

at n=0: U(x,0) =0, £(x,0) =0
at N = Ne: U(X,Ne) = W(X,ne)
uaI(X) 1 d Vf,
W(X,Ne) = —— + — J — {(=)*[W(E,ne)Ne
Uo n dt Uo
dg
= f(alﬂa)]}—'
xX=§
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The conversion of the flowfield to discrete values is
very similar to that of the direct method with an orthogonal
grid, central differences, and two-point averages. In the
interactive method though, the solution proceeds in the
downstream direction only. As only downstream disturbances
are accounted for, backflow causes numerical instabilities.
A stable integration c¢an be accomplished though, with the
assumption that backflow velocities are comparatively small.
The FLARE approximation (Flugge-Lotz and Reyhner), [Ref. 6:p.
19] sets the streamwise convection term udu/Ox equal to zero

in regions of backflow.

. 1 if ul , 20
FLR; , = 17

I-z o if ur . <o
J-z

The finite difference equations of the interactive

boundary layer with the "on-off switch" are now

£1 - £l . .
I g %(U; + U§-1) (5.32)
By
ul - oyl . .
b] ' j-1 _ %(V§ + V;-l) (5.33)
By
i-3 _ i-1 o
(bV) (bv) 323 s lenith s i} wio Wi 1)
R EARMERTSMESEY % 3-d
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_ 1, -3 vt - i o oi-3 £ - il
= %4y E“"j-s‘” S vu FIE S Ly el PO

—p— = 0. (5.34) and (5.35)

The boundary conditions are also expressed in terms of

grid or nodal values. A panel method type approximation
leads to
i _ i _
U1 =0, f1 =0
i _ i i _ i _ fi
Uy = Wy Wy = g5 + ¢ (Wyny - £5)

where g: and c¢i4 represent a parameter and the diagonal
element of the interaction matrix, due to a discrete
approximation to the Hilbert integral. To keep the number of
generated terms to a minimum, ordinary differential equations
like the y-momentum equation are centered about the
downstream face, and partial differential equations like the
x-momentum equation are centered about the middle of the box.

The unknowns occur in vectors of four components

The J quadruplets of unknowns match with 4J equations,
including 2(J-1) auxiliary relations and (j-1) x-momentum and

(j=1) y-momentum equations. Each equation corresponds to one
47




of the (j-1) grid rectangles and four boundary conditions.
The system is linearized around the values of the preceding

iteration (counter K-1) and a system with Newton iterates

Sf}‘x, GU%'K, GV%'K, BW%'K, emerges.
J J ] ]
h. , . .
i.K _ i.K _ 73 i.X i.K, _ (i.K-1 _ _i.K-1
5f3 6f 1 —7—(6UJ + 5aj-1) = fj-1 fj
+ ny vyt (5.36)
. h. . .
i.K _ i1.K _ 7] i.K 1.K, _ ,i.K-1 _ _i.K-1
6U UL (65" + 8Vyly) = UYLy Uj
i.K-1
. Vo 5.37
+ hJ 523 (5.37)
i.K..,i.K i.Kg.,i.K i1.K.1.K
S,) 3 \4 + 6V + X : +
( 1):J 6 (Sz)J o1 (Ss)] BfJ
i.Koc1i.K i.Kg1.K i.Kgp,1.K
(S¢)j Sfj_l + (Ss)j 6Uj + (Ss)j 6U._1 +
i.Kg,i.K 1.Kg,i.K i.K _ i.K
(57)j oW + (Sa)J 5Wj_1 = awj_l = (rz)j (5.38)
i.K i1.K _ 4i.K-1 _ _i.K-1
oW 5wj-1 = wj-l wj (5.39)
where
i.K-1
b%' X, .
i.K_ 7j i-3 i.K-1 _ .i-1 1 (i.K-1
(51)3 = ng + 2ki (f 23 f]-i) tz fj
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2 pooih K-l gde1) 1
R 7k j-3 j-3 T “j-
X .
_ Ti-d i.K-1 i-1 1 ,1i.K-1
_EK;__ (Vj_% + Vj-i) + I
X . . .
i-3 i.K-1 i-1 1 . 1i.K-1
=%, Y3 Tt Vi) t 1 Via
X: 1 . .
_ Ti-3 i.K-1_. .1
X. N .
_ Ti-3 i.K-1, i
_R;_ Uj_1 FLRj_%
Xi-4 gi-K-1
LR
Xi-} yi-K-1
P A
(bV)i'K'l (bv)l.K-l
- {{ J j-1 + 1(fv)l.K-1
hj Z j-3
X, 1 ) .
i-3 2 1.K-1 _ >,1.K-1 i
i.K-1 .i.K-1 i=-1 _i.K~1
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i-1 i-1
(bv)i7h - vyl

_ ei-1 _i.K-1., _ j 1 i-1
F5-3 V3o 1 - A 3 M- ALAAETS
- (xi's [(w2)yi™ o (u=yitlppl
X -4 J-3" " 34
i-1 i-1
* V. Byl
The boundry conditions are
i.K _ i.K _ i.K _ i.K _
6U1 = 0, 6f1 =0, GUJ GWJ =0
. . g. . .
i.XK 1 i.K i i.K-1 1 i.K-1
6f + (=— = N.)W = - £ - (— = 1) W
J Cii J'J ii J Cii J J

The overall procedure is a repetitive, linear approach to
solve the nonlinear system. The numerical solution is again
obtained using the block elimination method by Keller, except
that unlike the direct method the vectors of the unknown

Newton iterates are four dimensional.

{5§.x} _ 5f§.x’ 6U§’K, 6V§'K’ awi'x T
and
T B T T S R E S
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In matrix-vector form

(2K (oK
i K i.K i.K
(83X (al-%) el
C 41K, .. i.K. . i.K
[Bj .] [Aj ] [Cj .]
i.K. .i.K. . .i.K
[B; 1) [A;Z;) [C304])
(81-¥1 [al-¥
The 4x4 matrix blocks are
T ~h/2 0
i.K, _ i.K i.K i.K
0 -1 “hy,1/2
o 0 0
=1 -hy/2 0
i.K, _ i.K i.K i.K
[Bj ] = (54)j (Ss)j (52)j
0
0 0
. 0 0 0
[c;'K] = |o 0 0
0 1 “hy,q/2
o 0 0

5

1

- O O O

1<j<J-1




(ad-

(al:

(ra)i.

and

(re)

T 0
0 0
0 -1 —h2/2 0
|0 0 0 -1
[T -h /2 0 0
i.K i.K i.K i.K

1 0 0 1/Cii-nJ
| 0 0 0 -1

i.K-1 i.K-1 i.K-1 .

£ + h. 2<€j<J

5-1 b JVJ-% J

{As defined in equation (5.38)} 2<j<J

i.K-1 i.K-1 i.K-1 ,
Uj U3-1 + hj+1vj+§ 1<j<J-1

i.K-1 _ i.K-1 i<
WJ Wj+1 1<3<J~-1
0, (ra)7" N =0

i.K-1 i.K-1
9; - Ciif; (1 - Cy5 gV,
Cii
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VI. INTERACTION METHODS [Ref. 7:p. 79]

Interactive methods couple viscous and inviscid flows and
are intended to compute through regions of flow separation.
Given their 1levels of success, these methods have become
inexpensive alternatives to the Navier-Stokes solvers.

The simple, classical method of computing the viscous
flow over an airfoil is:

1) The velocity distribution is computed for inviscid
flow.

2) The inviscid velocity is input to the viscous flow.

3) The viscous flow 1is computed by integrating the
boundary layer equations.

Now, this method is good at predicting 1lift and drag, but
only if the flow remains attached, as information 1is
transferred only once from inviscid to viscous regions. For
more ccmplex flow multiple information transfers are
required.

Close coupling is needed to compute flows with separation
or separation bubbles. A better method than the previously
outlined classical method for exchanging information between
viscous and inviscid regions 1is interaction. The different
elements of interaction include direct and inverse, inviscid
and viscous flow solvers. Table 6.1 1illustrates the
different elements.

The disadvantage of the direct boundary layer method is
that the egquations become singular at the point of
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separation. The point of separation may be integrated
through, however, if the external velocity is computed with a
predetermined displacement thickness. This method is known
as the inverse boundary layer method.

Another problem associated with separation 1s the
instability of numerical methods which prohibits downstream
marching in regions of reversed flow. 1In the situation where
flow is reversed the FLARE approximation is used, where the
momentum transport term uau/ax is neglected. This
approximation is not necessarily accurate, but it does allow
for continued calculations.

Four interaction models have been developed to calculate
combined inviscid and viscous flows. All procedures solve
the Laplace equation for inviscid flow and the boundary layer

equations for wviscous flow. The four models are the direct,

inverse, semi-inverse and viscous-inviscid interaction
methods. Each model 1is subject to different boundary
conditions.

The first three models are considered weak interaction
methods in that they provide only a loose coupling between
viscous and inviscid regions. The two regions are treated
alternately. As indicated 1in Table 6.1, the viscous flow
solver calculates the flow in the viscous region and produces

the boundary condition of the inviscid region. The inviscid
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TABLE 6.1 INTERACTION ELEMENTS

BOUNDARY CONDITION

Flow Direct Inverse

Inviscid * Zero neormal Prescription of
velocity at velocity distribution
the surface

Viscous * No slip No slip condition
condition

* Prescription of
external velocity

Prescription of dis-
placement thickness
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flow solver calculates the flow in the inviscid region and
produces the boundary condition of the viscous region. The
weak interaction methods process either displacement
thickness or external velocity as an input and the other
quantity as an output.

In contrast, the fourth method, the simultaneous
interaction method, is considered a strong interaction
method. A strong method calculates displacement thickness
and external velocity simultaneously. The foundation of the

four interaction methods are discussed below.

A. DIRECT INTERACTION METHOD

The direct interaction model 1is composed of direct
inviscid and viscous flow solvers as indicated in Figure
6.1a. The external velocity distribution is calculated first
by inviscid computations. The displacement thickness, &*, is
then calculated using the external velocity as a boundary
condition. An updated shape of the displacement body is then
computed, and all steps are recomputed in order until the
results converge. As previously stated this method breaks
down at the point of separation, and is therefore not useable
in regions of separated flow. However, it 1is very useful
where viscous effects are small. The direct method is used
in the Cebeci Code arocund the nose and stagnation point of

the airfoil.
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B. INVERSE INTERACTION METHOD

Tis method was developed to circumvent the singularity
problems near separation. According to Figure 6.1b it uses
inverse inviscid and viscous flow solvers. Because of the
inverse method's very slow convergence, though, it is

suitable only at singular points.

C. SEMI-INVERSE INTERACTION METHOD
The semi-inverse interaction method incorporates direct
inviscid and inverse viscous flow solvers such that
displacement thickness 1is input to both solvers as shown in
Figure 6.1c. External velocity is output from both solvers.
Convergence is ensured with the use of a relaxation formula
which redefines the displacement thickness distribution.
Uev(X)
Onew*(X) = So1a*(x)([1 + wW{— — = 1) (6.1)
Uer (X)
where w is a relaxation parameter.
The numericcl weaknesses of the direct and inverse
methods are improved, but inviscid and viscous regions are

still loosely coupled.

D. VISCOUS-INVISCID INTERACTION METHOD

The viscous-inviscid interaction method ensures a strong
interaction between the outer, inviscid, and inner, viscous,
regions. Both the external velocity, ue(x), and displacement

thickness, ©6*, are unknown quantities. Convergence 1s
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ensured through the.interaction 1law which wuses the blowing
velocity concept.

The equations are solved through successive sweeps over
the airfoil surface as indicated in Figure 6.2. For each
sweep the external velocity for the boundary layer equation

is written

ue(X) = uaI(X) + 6ue(x) (6-2)

where,

Uer{(x) is the inviscid velocity

and

Ue(x) is the perturbation velocity due to the
boundary layer displacement.

The perturbation velocity is modeled by the interaction
law with the help of blowing velocities. The displacement
effect of - boundary layer is obtained by ejecting fluid at
the surface of the airfoil as shown in Figure 6.3.

With a properly arranged blowing velocity source
distribution on the airfoil surface, the virtual displacement
body becomes a streamline.

In determining the source strengths, the displacement-
body tangential flow condition is represented by

v(x,5*) déx*

= . (6.3)
Ue (X) dx
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Blade surface clong which
sources are distributed

Figure 6.3 The Blowing Velocity Concept
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Model simplifications are achieved through the use of
these thin airfoil approximations:
1) The u-velocity component is considered invariant across
the boundary 1layer, as the displacement thickness is
thin enough to consider the differences negligible.

2) The blowing velocity, v(x,0), 1is one half the source
strength, o(x), on an airfoil represented by a straight

line.
o(x)
= (x,0)
2
5~ 6v
= v(x,6*%) - — dy
o 5y
ds* due
= Ue + —— b*
6x dx
o{x) d
= —(uab*) (6.1)
2 dx

where (d/dx)(ueb*) is the blowing velocity.

The blowing velocity once obtained from the source
strength is then related to the perturbation velocity, 6ua.,
through the use of the Hilbert integral.

6Ua = — (6.5)

21

1 J'xb U(E,)

xm x‘c

After substituting equations (6.4) and (6.5) 1into (6.2)

the interaction law is obtained.
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Ua(X) = u;z(x) + ~ —(u.b*) (6.6)

1 [*» d dg
n Jx, ag X-t

The numerical implementation of the interaction law
requires some discrete approximation of the thin airfoil
integral, equation (6.6). Similar to the panel method, a

piecewise approximation of the continuous blowing velocity

d{(ueb*)/dx allows for piecewise analytical integration.
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VII. AIRFOIL STUDIES

Cebeci's interactive aircode was applied to four airfoils
over a wide range of Reynolds numbers and angles of attack.
The computer program results were then compared to reported
experimental data. Unless otherwise stated, 20 iterations
were used for each computer run, and laminar-to-turbulent
transitions were determined internal to the program. The
significance of the number of iterations will be discussed

later in the section.

A. NACA 665-018

Computer results of the NACA 66,-018 airfoil section were
compared to the test results of Gault [Ref. 8], which were
performed in the NASA Ames Research Center 7-by-10-foot wind
tunnel. The 1laminated pine model with a 1/8 inch-thick
mahogany plywood veneer spanned the 7-foot dimension to
simulate two-dimensional flow.

Total-and static-pressure surveys, hot-wire-anemometer
observations, and detailed pressure-distribution and liquid-
film measurements were made in regions of separated flow.
The measurements were obtained for a wide range of angles of
attack and for Reynolds numbers from 1.5 to 10 million. A
main purpose of these measurements was to identify locations

of separation, transition and reattachment.
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Using the Cebeci Code the 665-018 airfoil shown in Figure
7.1 was initially tested for section 1lift coefficients.
Comparisons were made with Abbott and Doenhoff [Ref. 9] and
the results are presented in Figures 7.2 and 7.3 for Reynolds
numbers of 3 and 6 million, respectively.

Upper surface, laminar to turbulent, transition locations
are shown in Figures 7.4 and 7.5 for increasing angles of
attack and for Reynolds numbers of 3 and €6 million,
respectively. Gault's locations were obtained from pressure
and hot-wire measurements, which provided near identical
results. The program transition locations were computed to
be the point of laminar separation. Note that the transition
locations shift forward as the angle of attack is increased,
and they approach the 1leading edge above 6 degrees. Unless
otherwise stated, all computer runs used a transition
constant of GY = 1200.

Midchord upper surface transitions at 1less than two
degrees angle of attack and Reynolds numbers of 1.5 to 10
million are shown in Figures 7.6, 7.7, 7.8 and 7.9. 1In all
cases the computed predictions were forward of Gault's
because of laminar separation predicted by the Code.

While Gault found leading edge separation bubbles, the
Cebeci Code did not predict them at any angle of attack for
Reynolds numbers of 3 and 6 million.

The relationships between separation and transition are

illustrated in Figure 7.10 for the results of Gault and the

65




Y/C

0.4

0.3

0.1 0.2

0.0

-04-03 ~-0.2 -0.1

NACA 663-018

_1

1

1

LEGEND
NACA TECHNICAL NOTE 3505

1

I [ | 1 | 1

[} 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8
X/C
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Cebeci code. The experimental results show separation prior
to transition, whereas the computer results predict
separation after transition. The importance of this
difference manifests itself in the difference between the
measured and computed midchord bubbles, pressure
distributions and velocity profiles shown in Figures 7.11 to
7.31.

Midchord separation bubbles for angles of attack of 0 and
2 degrees and Reynolds number of 2 million are plotted in
Figures 7.11 and 7.12. The lines represent contours where
U/Ue = O0. The Cebeci Code midchord bubbles are much smaller
than those found by Gault.

Full chord pressure distributions for angles of attack of
zero and two degrees, and Reynolds numbers of three and six
million are shown in Figures 7.13 to 7.16. In each case the
biggest difference between the experimental results and the
Cebeci code occurred near the midchord separation bubble
regions. Figure 7.17 shows a leading edge pressure
distribution for an angle of attack of six degrees and a
Reynolds number of three million.

Midchord velocity profiles are shown in Figures 7.18
through 7.24 for an angle of attack of =zero degrees and a
Reynolds number of two million, and in Figures 7.25 through
7.31 for two degrees angle of attack and a Reynolds number of
two million. These velocity profil.s clearly show a big

difference in bubble sizing.
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Figure 7.11 Midchord Bubble Shape, NACA 661-018,
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Figure 7.25 Upper Surface Velocity Profile, NACA 662-018,
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In an effort to increase the region of separated flow,
both the GY transition constant and the location of upper
surface transition were adjusted. Table 7.1 shows
theresults. With a constant of 1200 the transition location
could not be moved aft. However, when the constant was
lowered to 200 and below, the transition location, x/c = .69,
found by Gault, could be used moving the transition inside
the bubble. While a lowered GY., constant and increased x/c
transition improved the bubble size, the separation length,
x/c = .60 to .70, could not quite be met. The best result,
bubble = .6391 - .7098 (x/c¢), was obtained with a GY.,. of 40,
and an upper surface transition location, XTRU, input of .69
(x/c). Whether 40 is a suitable value for other foils has
not been determined.

Twenty iterations were used on all computer runs for this
airfoil. To make sure that 20 iterations were sufficient for
accurate results, Figure 7.32 was obtained. The 1ift
coefficient was plotted for each iteration, and as can be
seen the even iterations produced very minimal changes past
12. Even between 19 and 20 the change in 1lift was only 5 x
10-+. Therefore, 20 iterations were considered sufficient

for all computer runs.

B. NACA 0010 (MODIFIED)

Similar to the NACA 66s-018, computer results of the NACA
0010 (Modified) airfoil section were compared to the test
results of Gault [Ref. 8]. The tests were also conducted in
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TABLE 7.1 EFFECT OF GYTR AND XTRU ON THE LENGTH OF THE
SEPARATION BUBBLE

GYTR XTRU (X/C) SEPARATION (X/C)
1200 .620792 (1) .6572 - .6929
.65 (2)
.69 (2)
400 .69 (2)
300 .69 (2)
200 .69 .6391 - .7596
120 .639164 (1) No Separation
.65 .6572 - .6751
.69 .6391 - ,7434
80 .69 .6391 - ,7268
60 .69 .6391 - ,7268
40 .69 .6391 - .7098
30 .69 .6572 - .7098
20 .69 .6572 - .7098
10 .69 .6572 - .7098

NACA 663-018

Reynolds Number = 2,000,000

Angle of Attack = 0 Degrees

Region of Separation, Experimental (Gault) = .60 ~ .70 (x/c)

GYTR = Empirical Transition Constant

XTRU = Upper Surface Begin of Transition, Input or Computer
Derived

Lower Surface Begin of Transition = Computer Derived, Each

Case

1) Computer Derived

2) Breakdown in Simulation
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the 7-by-10-foot wind tunnel at NASA Ames and two-dimensional
flow was simulated.

The 0010 (modified) airfoil shown in Figure 7.33, unlike
the 66.-018, was not computer tested for section 1ift
coefficients as Abbott and Doenhoff [Ref. 9] had no
comparable airfoil.

Leading edge, upper surface, laminar to turbulent,
transition locations were observed, though, and the results
are shown in Figures 7.34 and 7.35 for Reynolds numbers of
two and six million, respectively. The Cebeci Code curves
represent the beginning of transition.

Full chord pressure distributions for angles of attack of
zero and three degrees and Reynolds numbers of three and
eight million are plotted in Figures 7.36 through 7.39.

Leading edge pressure distributions for angles of attack
of four, eight and twelve degrees, and Reynolds numbers of
two and six million are shown in Figures 7.40 through 7.45.
O0f particular interest are the "lump" disparities in Figures
7.42 through 7.45. A possible explanation for the computer
program deletions of the 1lumps 1is a failure to predict

leading edge bubbles.

C. NACA 4412

Computer results of the NACA 4412 airfoil section were
compared to the test results of Hastings and Williams [Ref.
10}, which were performed in the 13~by 9-foot 1low speed wind
tunnel of the Royal Aircraft Establishment at Bedford. The
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one meter chord model spanned the full width, 13 feet, to
simulate two-dimensional flow.

Mounted at its quarter-chord point, the model was
extensively instrumented with static pressure orifices.
Boundary layer and wake measurements were made at mid-span
where the 88 pressure orifices were located.

The main emphasis in the experiment was on defining the
upper surface boundary layer through separation and into the
wake. Laser anemometry was used to measure the average
velocities and Reynolds stresses were measured by hot-wire
anemometry.

The 4412 shown 1in Figure 7.46 was initially computer
tested with the Cebeci code for momentum thickness. In
Figure 7.47 the upper and lower surface laminar to turbulent
transitions were computer derived, X/Cer upper and lower
surfaces = 0.00625. In Figure 7.48 the upper and lower
surface transitions were input as x/c.. upper surface = 0.01,
and xX/c.r lower surface = 0.11. These values were as close
as could be input to 0.014 and 0.110 respectively, for the
downstream ends of the transition trips used in the
experiment. The differences in transition locations seemed
to make no difference in computer results. The momentum
thicknesses still did not agree very well with Hastings and
Williams' experimental results.

Figure 7.49 compares 1lift coefficients from the Cebeci

code, Hastings and Williams, and Abbott and Doenhoff [Ref.

114




NACA 4412

o<
> —
o -
|
N
o-—
|
o
o
|
=
T
[ ] [ i 1 i 1 i { t
0.0 0.1 0.2 03 04 05 086 0.7 08 09 1.0

X/C

Figure 7.46 NACA 4412

115




UPPER SURFACE MOMENTUM THICKNESS

e
o :
=-J ......... LEGE.\_D oo 'y iy . ..-;o... ..
CEBECI CODE COMPUTED TRANSITIONS | : i © )
© o EXPERIMENT HAND W ; : :
o e TR EBMEEAL ASAET O L e
- °
o
=) : :
S e oo - b } O U UG SN SO OO
> i !
&) ;
= :
E 3-. ceiees ceeiaen . ........................................
Eo
8 PRSP SOOI UUONE SOOI, SOOIt R B A e
2 i
~ 1 i i 8- ' +
2] O e AN OSSN OO FOROTORRRSRTIN SOUOUOON SO
=
e : i : : g . : : T
0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0

x/C
NACA 4412 R=4.17 MIL AOA=12.49

Figure 7.47 Upper Surface Momentum Thickness, NACA 4412,
ACA = 12.49°, R = 4.17 Million, Computer
Derived Transitions

115




UPPER SURFACE MOMENTUM THICKNESS

°.
e H
. :
='< » v T + -.:.- '3 fresccanns e ..
: ° o
2 LEGEND
CEBECI CODE TRS UX/C=.01 LX/C=.1 : o
¢ EXPERIMENT H AND W o :
:T — .............................................
g
c 3 (RSO SR R UORS UUNOSUR: SOOI OSSO R R R A eeeeeteneen
> ; ;
&) :
>
:- v [ 1 + # 4
=) e
e
4 " - - - - T ' T - !
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NACA 4412 R=4.17 MIL AOA= 12.48

Figure 7.48 Urper Surfacs Momentunm Thickness, NACA 4412,
AOA = 12.49°, R = 4.17 Million, Computer
Derived Input Transitions

117




CL

02 03 04 05 06 07 08 0.9

1.5 16 17 1.8

1.4

1.3

1.2

|

1.1

1.0

1

0.4

0.0

LIFT COEFFICIENT

1

{

......................................................................................................................

{

Jode Lo LEGEND
, A ANDD R = 3.0 MILLION
_________ A'ANDD R = 6.0 MILLION
1/ ] -.._CEBECI R = 4.17 MIL, COMP TRANS __
. i | + EXPERIMENT H AND W AOA = 12.49
I A x__CEBECI R = 4.17 MIL. INPUT TRANS

-3.0-1.0 1.0 3.0 50 7.0 9.0 11.0 13.0 150 17.0 19.0 21.0
ANGLE OF ATTACK
NACA 4412

Figure 7.49 Lift Coefficients, NACA 4412




10}]. The dashed 1line for the Cebeci code, Reynolds number
equal to 4.17 million and computer derived transitions,
should lie between the curves for Reynolds number equal to
three and six million from Abbott and Doenhoff. However, it
lies above the six million curve which further indicates an
insufficient boundary 1layer development. With the input
transition the code prediction for Reynolds number equal to
4.17 million and angle of attack equal to 12.49 degrees, was
even higher. O0f interesting note though, 1is that the
Hastings and Williams prediction, Reynolds number equals 4.17
million and angle of attack equals 12.49 degrees, lies below
the Abbott and Doenhoff values, possibly indicating an error
on their part.

Figures 7.50 through 7.56 show the velocity profiles from
X/c = .66 to the trailing edge. 1In all cases the Reynolds
number was 4.17 million, the angle of attack was 12.49
degrees, and the upper and lower transitions were .01 and
.11, respectively. U/Ue 1indicates the fraction of the
velocity at the boundary layer edge, and n/Delta is the
fraction of boundary 1layer thickness, where Delta, 6, is
defined as the layer thickness where the velocity is 99% of
the edge velocity.

As these figures indicate, as well as Figure 7.57, a
Cebeci code velocity profile summation, the code does predict
separation, but not the extent indicated by Hastings and

Williams. If the lift coefficient curves, Figure 7.58, can
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be a reference, then it appears that the Cebeci code predicts
an underdeveloped flow, too 1little separation. and Hastings
and Williams show an overdeveloped flow, too much separation,
for the given conditions.

To insure that the Cebeci Code was run correctly, certain
results by Cebeci, Clark, Chang, Halsey and Lee [Ref. 1] were
attempted to be duplicated. Figure 7.58 compares two curves
from Figure 14, [Ref. 1], curves labeled interactive theory
and interactive theory with a modified transition, with a
curve obtained using the Cebeci Code with 20 iterations and
computer derived transitions. Interestingly, the first and
third curves of Figure 7.58, interactive theory and Cebeci
Code, respectively, should be the same, but the two clearly
are not above nine degrees angle of attack. Even more
interestingly, the Cebeci Code 1lift curve in Figure 7.59
after only 10 iterations does match the interactive theory
curve.

Figure 7.60 clearly shows the importance of using enough
iterations to obtain a reasonably accurate solution.

Finally, Figure 7.61 shows a very good match between the
pressure coefficients for set conditions of Figure 16, Cebeci

et al [Ref. 1], and the Cebeci Code, 20 iterations.

D. FX 63-137

Computer results of the Wortmann FX 63-137 airfoil were
compared to the test results of Brendel and Mueller [Ref.
11], which were conducted in the University of Notre Dame
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.61m X .61m wind tunnel. Two cast epoxy resin airfoil models
with chords of .305m and spans of .4m were mounted 1in the
center of the test section. Pressure was recorded on one
model with 96 pressure taps connected through two scanivalves
to an electronic manometer. Boundary layer velocity
measurements were obtained on the other model using a
constant temperature anemometer with a five pum diameter,
single-sensor, hot-wire, boundary layer probe.

Using the Cebeci Code the FX 63-137 airfoil shown in
Figure 7.62 was initially tested for section 1lift
coefficients with a transition constant of 1200. Reynolds
numbers of .28, .5 and .7 million were used, and the results,
shown in Figures 7.63 and 7.64, were compared to those of
Althaus and Wortmann [Ref. 12]. Interestingly, the Cebeci
Code predicted low values for Reynolds numbers of .28 and .5
million, but for .7 million the lift coefficients were nearly
identical to Althaus and Wortmann up to an angle of attack of
10 degrees.

As the purpose of Brendel and Mueller was to make
boundary layer measurements at low Reynolds numbers, a
computer comparison was unsuccessfully attempted for steady
flow at a Reynolds number of 100,000 and an angle of attack
of 7 degrees. With 20 iterations the Cebeci Code failed.

To understand why the code calculations ceased for this
case, other computer runs were attempted for the same

Reynolds number and angle of attack, but with fewer
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iterations. Figures 7.65 and 7.66 show the upper surface
displacement and momentum thicknesses for steady flow and
iterations of 2, 4, 6, 8 and 10, As can be seen in both
figures flow calculations matched very well with experimental
data up to approximately x/C = .55. After that point stall

occurred and calculations ceased with more than 10

iterations. Brendel and Mueller experimentally derived
separation to begin at x/C = .34, but reattachment was shown
to occur at x/c¢c = .60. Unfortunately the Cebeci Code could

not predict reattachment for the prescribed conditions.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

Cebeci's viscous/inviscid interaction program was applied
to the analysis of steady, two dimensional, incompressible
flow past four airfoils, the NACA 665-018, 0010 (modified),
4412 and the Wortmann FX 63-137. Detailed comparisons with
the available experimental results show that for attached
flows the essential features are correctly modelled, but that
significant discrepancies are found 1in regions of flow
separation. These discrepancies are possibly caused by the
empirical transition modelling wused in the present code.
Future efforts therefore should be directed to the
incorporation of transition <calculations which permit the
prediction of transition within a separation bubble, such as
the application of the er-method proposed by Cebeci [Ref.

13].
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